
58 The Delphi Magazine Issue 36

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Incrementing A Date

QI need to take a date and add
a calendar month to it. The

30th March should give 30th April,
but I also want 31st March to give
30th April, since April only has 30
days. This seems to be proving
tricky with the varying lengths of
months and the requirement to ca-
ter for leap years. Is there a routine
that will do this for me?

AFortunately the SysUtils
unit has the IncMonth rou-

tine. So the following statement
does the trick and increments the
passed date by one month:

NewDate := IncMonth(OldDate, 1)

Access 97 Support

QI’m using Delphi and wish to
write applications that use

Access databases. However, the in-
formation supplied with Delphi
claims that the native Access sup-
port (ie BDE driver and not the
ODBC driver) relies on MS Access
95 being installed on the machines
that my application is to be de-
ployed to. Some of the machines
my application will be running on
will have had MS Access 97 in-
stalled but not MS Access 95. This
seems to mean that my application
will not run successfully. When will
Delphi support MS Access 97?

AThe BDE MS Access driver
relies on version 3.0 of the

Microsoft Data Access Objects
(DAO 3) as supplied in Access 95.
The Data Access Objects as
shipped with Access 97 (DAO 3.5)
were different enough to mean that
the BDE Access driver would not
work with them initially. Delphi 3
shipped with BDE 4.00. The

maintenance release, Delphi 3.01,
shipped with an updated version of
the BDE, version 4.01. Sometime
shortly after that, a new version of
Visual dBASE was released which
used BDE 4.51. This version of the
BDE supports DAO 3.0 and DAO 3.5
using different driver libraries; in
other words it supports both
Access 95 and Access 97. As soon
as this new version of Visual dBASE
was released, BDE 4.51 was made
available on Inprise’s website.

So, in summary, if you haven’t
already got your hands on Delphi 4,
which ships with BDE 5, then
download BDE 4.51 from Inprise’s
website (www.inprise.com).

Access Security

QWhen I use MS Access it
looks for user names and

passwords as appropriate in the
system security database
(SYSTEM.MDW) that I previously at-
tached to with WRKGADM.EXE.
However, when I use Delphi 3 to
talk to my Access databases, Del-
phi seems to completely ignore the
information in this .MDW file. Can I
get the BDE to make use of this file?

AFrom version 4.01 of the
BDE, as first shipped in the

Delphi 3.01 maintenance release,
the MS Access driver has a SYSTEM
DATABASE parameter that can be set
in the BDE Administrator. This can
be set to point to a workgroup in-
formation file (.MDW file) of your
choice. You can set a default value
for the driver, and can also modify
it on a per-alias basis.

Memory Management Woes

QI have been trying to imple-
ment a dynamic array in Del-

phi using a TList. It seems to be all

wonderful, but I’m left with a ques-
tion: for proper cleanup on termi-
nating an application, how do you
know whether a TListhas been cre-
ated but not yet freed? One answer
is to create it, use it and free it all in
one gulp, within the appropriate
try..finally block. But I might
need to create a TList, then use it in
various parts of the application
and free it along the way. When the
program shuts, if the TList hasn’t
yet been freed, then I want to be
sure to free it. I’ve tried in an On-
Close handler:

if Assigned(MyList) then

MyList.Free;

The trouble is, if MyList was freed
earlier, Assigned(MyList) will still
be True. Then I tried:

try

MyList.Free;

except

on E: Exception do

ShowMessage(‘OnClose, error

freeing MyList: ‘ + E.Message);

end;

My exception handler doesn’t
catch this, but after the application
appears to terminate, I get an
exception dialog saying Access vio-
lation. Any light you can shed?

AYour point about As-
signed(MyList) being True

regardless is incorrect if you re-
member the rule of ‘whenever you
free an object, set its object
reference back to nil’, eg:

MyList.Free;
MyList := nil;

If you do this, calling Free on the
object reference is perfectly safe as
it will observe that it is being called

60 The Delphi Magazine Issue 36

through a nil reference and per-
form no action. Check the Destruc-
tor Query entry in The Delphi Clinic
in Issue 29 for more on this issue.

Forcing Windows Shutdown

QI’m using Delphi 3 on an NT 4
Workstation and I want to do

a complete system shutdown from
a Delphi app. Here’s a relevant
section from the Win32 API help:

‘The ExitWindowsEx function can
be used to shut down the system.
Shutting down flushes file buffers
to disk and brings the system to a
condition in which it is safe to turn
off the computer. The calling
process must have the SE_SHUT-
DOWN_NAME privilege to shut down
the system.

The following example enables
the SE_SHUTDOWN_NAME privilege and
then shuts down the system
[shown in Listing 1].’

I have translated this into Delphi,
and tried running it, but it does not
work. ExitWindowsEx returns
ERROR_NO_SUCH_PRIVILEGE despite
me logging in as the Administrator.
Can you see anything wrong in my
translation?

AI checked through your
translation and it was fine.

However, the original example
from the Windows API help was

wrong. The reference to
TEXT(“SE_SHUTDOWN_NAME”) should
have just been SE_SHUTDOWN_NAME. In
the Win32 SDK, WinNT.H defines
SE_SHUTDOWN_NAME to be TEXT(“Se-
ShutdownPrivilege”). In Delphi, you
just use the string in the quotes
and forget about what the TEXT()
macro does. Some code that works
fine in Delphi 2 and 3 is shown in
Listing 5, and it caters for both
Windows NT and Windows 95.

You might notice I commented
out the EWX_FORCE flag, as normally
you would want the user to termi-
nate their applications individu-
ally, saving data where they wish
to. Forcing a shutdown over the
users’ heads is to be discouraged.
The code is in ShutDown.Dpr.

Since Win32Check was introduced
in Delphi 3, the code in Listing 5
works because a substitute routine
is made available if being compiled
in Delphi 2. Win32Check is a proce-
dure that takes a Boolean parame-
ter, and if it is False, raises an
exception with a message gener-
ated by SysErrorMessage having
GetLastError passed to it. My code
looks like Listing 2.

In fact there was another prob-
lem in making the code work with
Delphi 2. The declaration of the
OpenProcessToken API changed
from Delphi 2 to 3. Delphi 2’s decla-
ration looks like Listing 3.

The declaration in Delphi 3
changes to that shown in Listing 4.
Notice the last parameter, Token-
Handle, has changed from being a
pointer to a THandle to being a var
parameter of type THandle. So, in
Delphi 2 the last parameter should
be @HToken instead of HToken. This
is taken care of by conditional
compilation in the files on disk.

Delphi Colour Changes

QI know I can change the col-
our that the editor displays

my Pascal code in, but are there
any more colour preferences I can
customise in Delphi?

AOf course many of the col-
ours used by the product

are relative colours, which will
change if you alter your Windows
colours in Control Panel. However,
Delphi does have a couple more
options tucked up its sleeve. You
can customise the colour the Ob-
ject Inspector uses to display its
property values. Additionally, the
Delphi main window allows you to
customise the colour used to draw
the background of tooltips.

These two settings rely on a sec-
tion of Delphi’s registry area that
appears to be undocumented
since Delphi 2, though the equiva-
lent area of the Delphi.Ini file was
documented for Delphi 1. In

HKEY_CURRENT_USER\Software\
Borland\Delphi\3.0

(or 2.0) you can define a Globals
key. This key supports at least
three string values. HintColor is a
string representation of a Win-
dows colour number, decimal or
hexadecimal, that specifies a
tooltip background colour and
PropValueColor dictates the Object
Inspector’s property value colour.
Finally, PrivateDir defines a poten-
tially shared directory containing
certain configuration files such as
the Delphi menu template collec-
tion. Delphi 4 is a bit more choosy
about what it reads, and seems to
ignore the HintColor entry.

IDESetup.Dpr shows how to set
up the two IDE colour options in
the appropriate registry area, or in

➤ Below: Listing 4

HANDLE hToken;
TOKEN_PRIVILEGES tkp;
/* Get a token for this process. */
if (!OpenProcessToken(GetCurrentProcess(),
TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken)) error("OpenProcessToken");

/* Get the LUID for the shutdown privilege. */
LookupPrivilegeValue(NULL, TEXT("SE_SHUTDOWN_NAME"), &tkp.Privileges[0].Luid);
tkp.PrivilegeCount = 1; /* one privilege to set */
tkp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
/* Get the shutdown privilege for this process. */
AdjustTokenPrivileges(hToken, FALSE, &tkp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
/* Cannot test the return value of AdjustTokenPrivileges. */
if (GetLastError() != ERROR_SUCCESS) error("AdjustTokenPrivileges");
/* Shut down the system and force all applications to close. */
if (!ExitWindowsEx(EWX_SHUTDOWN | EWX_FORCE, 0)) error("ExitWindowsEx");

➤ Above: Listing 3

➤ Below: Listing 2➤ Above: Listing 1

Function OpenProcessToken(ProcessHandle: THandle; DesiredAccess: DWORD; var
TokenHandle: THandle): BOOL; stdcall;

function OpenProcessToken(ProcessHandle: THandle; DesiredAccess: DWORD;
TokenHandle: PHandle): BOOL; stdcall;

procedure Win32Check(Value: Boolean);
begin
if not Value then
raise Exception.Create(SysErrorMessage(GetLastError))

end;

August 1998 The Delphi Magazine 61

procedure TForm1.btnRestartClick(Sender: TObject);
var
HToken: THandle;
TP, OldTP: TTokenPrivileges;
ReturnLen: Integer;

begin
if Win32Platform = VER_PLATFORM_WIN32_NT then begin
//Get a token for this process
Win32Check(OpenProcessToken(GetCurrentProcess(),
TOKEN_ADJUST_PRIVILEGES or TOKEN_QUERY, HToken));

//Get the LUID for the shutdown privilege
Win32Check(LookupPrivilegeValue(nil,
'SeShutdownPrivilege', TP.Privileges[0].Luid));

TP.PrivilegeCount := 1; //One privilege to set
TP.Privileges[0].Attributes := SE_PRIVILEGE_ENABLED;
//Acquire shutdown privilege for this process
Win32Check(AdjustTokenPrivileges(HToken,
False, TP, SizeOf(OldTP), OldTP, ReturnLen));

end;
//Shut down the system and force all applications to close
if not ExitWindowsEx(EWX_SHUTDOWN {or EWX_FORCE}, 0) then
raise Exception.Create('Cannot shut Windows');

Close;
end;

the [Globals] section of Delphi 1’s
Delphi.Ini (see Listing 6). Figure 1
shows a possible effect on the
Delphi 3.0 IDE.

List Of Numbers

QI need to store a list of num-
bers in memory for my pro-

gram to work with. I can use an
array, but that means I need to de-
clare it as large as the largest list I
will ever need. Are there other al-
ternatives?

AYes, you could use a dynami-
cally sized array (watch out

for my Dynamic Arrays article in
the next issue). But, as an alterna-
tive, you can store 32-bit numbers
directly in a TList, or in the Objects
array of a TStringList. A TList’s
Items property (its default array
property) is an array of pointers. A

uses
{$ifdef Win32}
Registry,

{$else}
Inifiles,

{$endif}
Windows, Messages, ...;

type
TForm1 = class(TForm)
...

private
{$ifdef Win32}
Ini: TRegIniFile;

{$else}
Ini: TIniFile;

{$endif}
end;

...
procedure TForm1.FormCreate(Sender: TObject);
begin
{$ifdef Win32}
Ini := TRegIniFile.Create('Software\Borland\Delphi\3.0');

{$else}

Ini := TIniFile.Create('Delphi.Ini');
{$endif}
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
Ini.Free

end;
procedure TForm1.btnTooltipClick(Sender: TObject);
begin
CD.Color := StrToInt(Ini.ReadString('Globals',
'HintColor', IntToStr(Application.HintColor)));
if CD.Execute then
Ini.WriteString('Globals', 'HintColor',
Format('$%x', [CD.Color]))

end;
procedure TForm1.btnPropClick(Sender: TObject);
begin
CD.Color := StrToInt(Ini.ReadString('Globals',
'PropValueColor', IntToStr(clWindowText)));

if CD.Execute then
Ini.WriteString('Globals', 'PropValueColor',
Format('$%x', [CD.Color]))

end;

➤ Listing 6

TStringList’s Objects property is
an array of TObject references.
Both a Pointer and an object
reference are 32-bit pointers that
you can typecast into Longints.

So, to add a number into a list,
you can use syntax like
MyList.Add(Pointer(546)). To
extract the fifth number in the list
you can use Longint(MyList.
Items[4]), bearing in mind a
TList’s elements are numbered
from zero. Since the Itemsproperty
is the default array property, you
can abbreviate this slightly to:
Longint(MyList[4]). Of course any
other type that fits into four bytes
can also be stored directly in the
pointers of a TList.

As an example, the project Lot-
tery.Dpr will choose six different

random numbers between 1 and
49, as required when playing the
UK National Lottery. To ensure the
six numbers are all different, when
each number is chosen, it will be
removed from the list. The num-
bers will be stored in a TList, cre-
ated in the form’s OnCreate event
handler and destroyed in the OnDe-
stroy handler (see Listing 7).

Each time a new set of six num-
bers is required, the list will be
cleared, using the Clear method,
and a loop will then add the 49
numbers in. A second loop iterates
six times to pick a number. A
random element in the list will be
chosen (employing the list’s Count
property) and that number will be
written into an appropriate label’s
caption. Finally, the number is
removed from the list via the
Delete method, before moving on
to the next number. The code for
this bit, an OnClick handler shared
by everything on the form is in

➤ Figure 1

➤ Listing 5

62 The Delphi Magazine Issue 36

Listing 8. The program is shown
running in Figure 2.

The labels on the form are called
lblNo1, lblNo2... up to lblNo6. The
code in Listing 8 takes advantage of
this to simplify the setting of their
captions. The loop manufactures
the component name as a string
and passes it to the form’s FindCom-
ponent method. If FindComponent
locates a component owned by the
form with the given name, it
returns a reference to it. However,
since FindComponent always returns
a TComponent reference, the TLabel
typecast is required in order to
access the Caption property.

The second version of this proj-
ect performs a couple of extra
user-friendly actions (Listing 9
shows the main controlling code).
Before each number is written onto
the label, some small, embarrass-
ingly minor, attempt at animation
is made, a sort of spinning line
thing. This is done by looping
through the characters /, -, \ and |
a few times. The routine guilty of
playing this little game is shown in
Listing 10. As you can see, since it
makes the whole number calcula-
tion thing take longer, it makes
sure Application.ProcessMessages
and Application.Terminated are
used appropriately to let the user
give up if necessary. Also, because
of the nature of ProcessMessages,
Listing 9 uses a small semaphore
flag to ensure that the routine isn’t
re-entered by the user clicking the
form midway through its number
generation. The final action of the
OnClick handler in Listing 9 is to
sort the numbers on the form into
numerical order. A routine, Sort-
Numbers, does this using some sim-
plistic binary sort algorithm.

Acknowledgements
Thanks to Steve Axtell of Inprise’s
Professional Services Department
for most of the database-related
information used in this month’s
column.

type
TfrmLottery = class(TForm)
...
List: TList;

end;
...
procedure TfrmLottery.FormCreate(Sender: TObject);
begin
Randomize; { Initialise random number generator }
List := TList.Create { Create number list }

end;
procedure TfrmLottery.FormDestroy(Sender: TObject);
begin
List.Free; { Dispose of number list }
List := nil

end;

procedure TfrmLottery.GenericClick(Sender: TObject);
var
Loop, CharLoop, Index: Integer;

const
MaxNum = 49;
InHandler: Boolean = False; { Re-entry protection flag }

begin
if not InHandler then begin
InHandler := True;
List.Clear; { Empty the list }
{ Fill the list with 49 numbers }
for Loop := 1 to MaxNum do
List.Add(Pointer(Loop));

{ Loop for each number sought }
for Loop := 1 to 6 do begin
{ Choose one of the remaining numbers in the list }
Index := Random(List.Count);
{ Do "pretty" animation }
AnimateLabel(FindComponent('lblNo' + IntToStr(Loop)) as TLabel, 15, 50);
{ Write it in the appropriate label }
TLabel((FindComponent('lblNo' + IntToStr(Loop)))).Caption :=
IntToStr(Longint(List[Index]));

{ Remove the number from the list, so it won't be picked again }
List.Delete(Index);

end;
ShowMessage('Press OK to sort the numbers into numerical order');
SortNumbers([lblNo1, lblNo2, lblNo3, lblNo4, lblNo5, lblNo6]);
InHandler := False

end;
end;

➤ Figure 2

➤ Below: Listing 10➤ Above: Listing 9

➤ Below: Listing 8➤ Above: Listing 7

procedure TfrmLottery.GenericClick(Sender: TObject);
var Loop, Index: Integer;
const MaxNum = 49;
begin
List.Clear; { Empty the list }
{ Fill the list with 49 numbers }
for Loop := 1 to MaxNum do
List.Add(Pointer(Loop));

{ Loop for each number sought }
for Loop := 1 to 6 do begin
{ Choose one of the remaining numbers in the list }
Index := Random(List.Count);
{ Write it in the appropriate label }
(FindComponent('lblNo' + IntToStr(Loop)) as TLabel).Caption :=
IntToStr(Longint(List[Index]));

{ Remove the number from the list, so it won't be picked again }
List.Delete(Index);

end
end;

{$ifndef Win32}
procedure Sleep(MSec: Integer);
var OldTime: TDateTime;
begin
OldTime := Now;
repeat until Now >= OldTime + MSec / MSecsPerDay

end;
{$endif}
procedure AnimateLabel(Lbl: TLabel; Loops, Delay: Integer);
var
Loop: Integer;

const
Chars: String = '/-\I';

begin
for Loop := 1 to Loops do begin
Lbl.Caption := Chars[Loop mod Length(Chars) + 1];
Lbl.Parent.Invalidate; { Post label's parent a repaint message }
Application.ProcessMessages; { Allow all posted messages to be processed }
if Application.Terminated then Break; { Let user bail out if bored }
Sleep(Delay)

end
end;

	Incrementing A Date
	Access 97 Support
	Access Security
	Memory Management Woes
	Forcing Windows Shutdown
	Delphi Colour Changes
	List Of Numbers
	Acknowledgements

